Separation matrix optimization using associative memory model for blind source separation Motoi Omachi, Tetsuji Ogawa and Tetsunori Kobayashi (Waseda University, Japan); Masaru Fujieda and Kazuhiro Katagiri (Oki Electric Industry Co., Ltd., Japan)

Abstract

Objective:

• Linear blind source separation (BSS) yielding high quality and less distorted speech

Approach:

Optimization of a linear separation matrix using neural network-based associative memory model (AMM)

Result (Simultaneous speech separation):

Residual distortion caused by Independent vector Analysis (IVA) can be reduced.

Conventional linear BSS (e.g., ICA, IVA)

- Estimate linear separation matrix defeating effect of mixing matrix.
- Assume that source signals are statistically Independent.

Does not take account of property of source signals.

Proposed linear BSS

- Separation matrix is estimated by iterating following two steps:
- *Reference signal estimation*: Source signal (referred to ``reference signal") is estimated from separated signal using AMM.
- Separation matrix optimization: Separation matrix is optimized by minimizing error between separated signal and reference signal.

Property of source signals is explicitly incorporated in separation matrix optimization.

Convolutional neural network can remove residual distortion included in spectra of separated signal.

Separation Matrix optimization

Separation matrix is modified using a **linear projection matrix**.

$\left[\overline{Y}_{1}\right] (\omega$	ο, τ)	
$\overline{Y}_2(\omega$	$[, \tau)$	
Aodified signal		

Reference

signals

- $\begin{bmatrix} M_{11}(\omega) & M_{12}(\omega) \end{bmatrix} \begin{bmatrix} Y_1(\omega, \tau) \end{bmatrix}$ $M_{21}(\omega)$ **Projection matrix**
- Projection matrix is optimized with a gradient descend method. • N_s , N_{τ} and N_m : # of sources. frames and microphones

$$J(\omega) = \sum_{n=1}^{N_s} \sum_{\tau=1}^{N_\tau} \left| \log |\hat{S}_n(\omega, \tau)|^2 - \log \left| \sum_{j=1}^{N_m} M_{nj} Y_j(\omega, \tau) \right|^2 \right|$$

Reference signal

- Logarithmic power spectra of non-distorted signal
- Bottle neck layer
- Extraction of higher-order feature between the positions
- **Convolution layer**
- _ocal feature extraction
- Logarithmic power spectra of distorted signal

 $M_{22}(\omega) \left[Y_2(\omega, \tau) \right]$ Separated signal

(IVA)

iviodified signal

Source separation experiment

Acoustic Environment

Speech materials

Training and Development set (for AMM training):

- Japanese phoneme balanced sentence database [4 females]
- Train. : 9 speaker pairs, 50 utterances for each pair
- Dev. : 1 speaker pair, 52 utterances
- Mixed signals are obtained by delay-based approximation (with SNR = 0dB).
- Dev. Set is used for early stopping

<u>Test set (for BSS experiment)</u>

- Japanese newspaper article sentence database [20 females]
- 10 speaker pairs, 3 utterances for each pair
- Mixed signals are obtained by convoluting impulse response (with SNR = 0dB).

Signal-to-distortion ratio (SDR) • Our method can reduce residual distortions caused by IVA

Phoneme error rate (DNN/ triphone + bigram) Our method can **improve speech recognition** performance

1	Dataset	Source directions
		$(\boldsymbol{ heta_1}, \boldsymbol{ heta_2})$
27	Training	(-15,15),(-45,45),
'0 cn		(-75,75),(-90,90)
	Development	(-60,60)
	Testing	(-30,30),(-30,0),(0,-30),
		(0,30),(30,0),(30,-30)